Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38565761

RESUMO

Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications. In this study, two types of emulsion were formulated using different homogenization processes:mechanical overhead stirrer (MEB for blank Emulsion and MELX for LXA4 loaded-Emulsion) or Luer-lock syringes (SEB for blank Emulsion and SELX for LXA4 loaded-Emulsion)). Following characterization, including size and droplet morphology assessment by microscopy, the encapsulation efficiency (EE) was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To exert control over LXA4 release, these emulsions were embedded within silanized hyaluronic acid hydrogels. A comprehensive evaluation, encompassing gel time, swelling, and degradation profiles under acidic, basic, and neutral conditions, preceded the assessment of LXA4 cumulative release using LC-MS/MS. Physicochemical results indicate that H-MELX (Mechanical overhead stirrer LXA4 Emulsion loaded-Hydrogel) exhibits superior efficiency over H-SELX (Luer-lock syringes LXA4 Emulsion loaded-Hydrogel). While both formulations stimulated pro-inflammatory cytokine secretion and promoted a pro-inflammatory macrophage phenotype, LXA4 emulsion-loaded hydrogels displayed a diminished pro-inflammatory activity compared to blank emulsion-loaded hydrogels. These findings highlight the biological efficacy of LXA4 within both systems, with H-SELX outperforming H-MELX in terms of efficiency. To the best of our knowledge, this is the first successful demonstration of the biological efficacy of LXA4 emulsion-loaded hydrogel systems on macrophage polarization. These versatile H-MELX and H-SELX formulations can be customized to enhance their biological activity making them promising tools to promote the resolution of inflammation in diverse clinical applications.

2.
Transl Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471633

RESUMO

The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. However, to date, the contribution of PCSK9 in food allergy remains unknown. Here, we showed that Pcsk9 deficiency or pharmacological inhibition of circulating PCSK9 with a specific monoclonal antibody (m-Ab) protected mice against symptoms of gliadin-induced-food allergy, such as increased intestinal transit time and ear oedema. Furthermore, specific PCSK9 inhibition during the elicitation steps of allergic process was sufficient to ensure anti-allergic effects in mice. Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.

3.
Int J Obes (Lond) ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491190

RESUMO

BACKGROUND: The adiponectin is one of the rare adipokines down-regulated with obesity and protects against obesity-related disorders. Similarly, the apolipoprotein M (apoM) is expressed in adipocytes and its expression in adipose tissue is associated with metabolic health. We compared circulating apoM with adiponectin regarding their relationship with metabolic parameters and insulin sensitivity and examined their gene expression patterns in adipocytes and in the adipose tissue. METHODS: Circulating apoM and adiponectin were examined in 169 men with overweight in a cross-sectional study, and 13 patients with obesity during a surgery-induced slimming program. Correlations with clinical parameters including the insulin resistance index (HOMA-IR) were analyzed. Multiple regression analyses were performed on HOMA-IR. The APOM and ADIPOQ gene expression were measured in the adipose tissue from 267 individuals with obesity and a human adipocyte cell line. RESULTS: Participants with type 2 diabetes had lower circulating adiponectin and apoM, while apoM was higher in individuals with dyslipidemia. Similar to adiponectin, apoM showed negative associations with HOMA-IR and hs-CRP (r < -0.2), and positive correlations with HDL markers (HDL-C and apoA-I, r > 0.3). Unlike adiponectin, apoM was positively associated with LDL markers (LDL-C and apoB100, r < 0.20) and negatively correlated with insulin and age (r < -0.2). The apoM was the sole negative determinant of HOMA-IR in multiple regression models, while adiponectin not contributing significantly. After surgery, the change in HOMA-IR was negatively associated with the change in circulating apoM (r = -0.71), but not with the change in adiponectin. The APOM and ADIPOQ gene expression positively correlated in adipose tissue (r > 0.44) as well as in adipocytes (r > 0.81). In adipocytes, APOM was downregulated by inflammatory factors and upregulated by adiponectin. CONCLUSIONS: The apoM rises as a new partner of adiponectin regarding insulin sensitivity. At the adipose tissue level, the adiponectin may be supported by apoM to promote a healthy adipose tissue. TRIAL REGISTRATION: NCT01277068, registered 13 January 2011; NCT02332434, registered 5 January 2015; and NCT00390637, registered 20 October 2006.

4.
Acta Physiol (Oxf) ; 240(5): e14133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546340

RESUMO

AIM: Perinatal hypercholesterolemia exacerbates the development of atherosclerotic plaques in adult offspring. Here, we aimed to study the effect of maternal treatment with cholestyramine, a lipid-lowering drug, on atherosclerosis development in adult offspring of hypercholesterolemic ApoE-deficient (ApoE-/-) mice. METHODS: ApoE-/- mice were treated with 3% cholestyramine (CTY) during gestation (G). After weaning, offspring (CTY-G) were fed control diet until sacrificed at 25weeks of age. Atherosclerosis development in the aortic root of offspring was assessed after oil-red-o staining, along with some of predefined atherosclerosis regulators such as LDL and HDL by high-performance liquid chromatography (HPLC), and bile acids (BA) and trimethylamine N-oxide (TMAO) by liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS: In pregnant dams, cholestyramine treatment resulted in significantly lower plasma total- and LDL-cholesterol as well as gallbladder total BA levels. In offspring, both males and females born to treated dams displayed reduced atherosclerotic plaques areas along with less lipid deposition in the aortic root. No significant change in plasma total cholesterol or triglycerides was measured in offspring, but CTY-G males had increased HDL-cholesterol and decreased apolipoproteins B100 to A-I ratio. This latter group also showed reduced gallbladder total and specifically tauro-conjugated bile acid pools, whereas for CTY-G females, hydrophilic plasma tauro-conjugated BA pool was significantly higher. They also benefited from lower plasma TMAO. CONCLUSION: Prenatal cholestyramine treatment reduces atherosclerosis development in adult offspring of ApoE-/- mice along with modulating the plaques' composition as well as some related biomarkers such as HDL-C, bile acids and TMAO.

5.
Acta Physiol (Oxf) ; 240(3): e14090, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230587

RESUMO

AIM: Offspring of obese mothers are at high risk of developing metabolic syndrome and cognitive disabilities. Impaired metabolism has also been reported in the offspring of obese fathers. However, whether brain function can also be affected by paternal obesity has barely been examined. This study aimed to characterize the learning deficits resulting from paternal obesity versus those induced by maternal obesity and to identify the underlying mechanisms. METHODS: Founder control and obese female and male Wistar rats were mated to constitute three first-generation (F1) experimental groups: control mother/control father, obese mother/control father, and obese father/control mother. All F1 animals were weaned onto standard chow and underwent a learning test at 4 months of age, after which several markers of glutamate-mediated synaptic plasticity together with the expression of miRNAs targeting glutamate receptors and the concentration of kynurenic and quinolinic acids were quantified in the hippocampus and frontal cortex. RESULTS: Maternal obesity induced a severe learning deficit by impairing memory encoding and memory consolidation. The offspring of obese fathers also showed reduced memory encoding but not impaired long-term memory formation. Memory deficits in offspring of obese fathers and obese mothers were associated with a down-regulation of genes encoding NMDA glutamate receptors subunits and several learning-related genes along with impaired expression of miR-296 and miR-146b and increased concentration of kynurenic acid. CONCLUSION: Paternal and maternal obesity impair offspring's learning abilities by affecting different processes of memory formation. These cognitive deficits are associated with epigenetic and neurochemical alterations leading to impaired glutamate-mediated synaptic plasticity.


Assuntos
MicroRNAs , Obesidade Materna , Humanos , Adulto , Ratos , Feminino , Masculino , Gravidez , Animais , Obesidade Materna/complicações , Obesidade Materna/genética , Ratos Wistar , Obesidade , Pai , Encéfalo , Receptores de Glutamato/genética , Glutamatos/genética , Epigênese Genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-37280149

RESUMO

BACKGROUND: Intrinsic capacity (IC) is a concept related to functionality that reflects healthy aging. ATPase inhibitory factor 1 (IF1) is a multifaceted protein that regulates mitochondrial oxidative phosphorylation (OXPHOS), and may be involved in IC. The objective of this study is to investigate the association between plasma levels of IF1 and IC changes in community-dwelling older adults. METHODS: Community-dwelling older adults from the Multidomain Alzheimer Preventive Trial (MAPT Study) were enrolled in this study. A composite IC score was calculated based on 4 IC domains: locomotion, psychological dimension, cognition, and vitality (with data available annually over 4 years of follow-up). Secondary analyses were conducted on the sensory domain (with data available only for 1 year of follow-up). Mixed-model linear regression adjusted for confounders was conducted. RESULTS: A total of 1 090 participants with usable IF1 values were included in the study (75.3 ± 4.4 years; 64% females). Compared to the lowest quartile, both the low- and high-intermediate IF1 quartiles were found to be cross-sectionally associated with greater composite IC scores across 4 domains (ßlow-intermediate, 1.33; 95% confidence interval [CI] 0.06-2.60 and ßhigh-intermediate, 1.78; 95% CI 0.49-3.06). In the secondary analyses, the highest quartile was found to be associated with a slower decline in composite IC scores across 5 domains over 1 year (ßhigh 1.60; 95% CI 0.06-3.15). The low- and high-intermediate IF1 quartiles were also found to be cross-sectionally associated with greater locomotion (ßlow-intermediate, 2.72; 95% CI 0.36-5.08) and vitality scores (ßhigh-intermediate, 1.59; 95% CI 0.06-3.12), respectively. CONCLUSIONS: This study is the first to demonstrate that levels of circulating IF1, a mitochondrial-related biomarker, are associated with IC composite scores in both cross-sectional and prospective analyses among community-dwelling older adults. However, further research is needed to confirm these findings and elucidate the potential underlying mechanisms that may explain these associations.


Assuntos
Doença de Alzheimer , Vida Independente , Idoso , Feminino , Humanos , Masculino , Estudos Transversais , Estudos Prospectivos , /sangue
7.
Obesity (Silver Spring) ; 32(1): 91-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37875256

RESUMO

OBJECTIVE: The objective of this study was to compare the general and metabolic impact of single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) with Roux-en-Y gastric bypass (RYGB) in an obese (ob/ob) mouse model. METHODS: 10-week-old male ob/ob mice underwent either SADI-S, RYGB, or laparotomy surgery (Sham group). General and metabolic parameters were assessed during a 5-week period thereafter. RESULTS: SADI-S induced a deeper weight loss ([mean ± SEM] -41.2% ± 3.3%) than RYGB (-5.6% ± 3.5%, p < 0.001) compared with the Sham group (+6.3% ± 1.0%, p < 0.05). A significant food restriction was observed after SADI-S only (-31%, 117.4 ± 10.3 g vs. 170.2 ± 5.2 g of food at day 35 in Sham group mice, p < 0.001). Random-fed glycemia and glucose tolerance were more improved after SADI-S than RYGB. SADI-S decreased plasma cholesterol concentration by 60% (0.49 ± 0.04 g/L vs. 1.40 ± 0.10 g/L in the Sham group at day 35, p < 0.01), significantly more than RYGB (1.04 ± 0.14 g/L, p = 0.018). Plasma sitosterol/cholesterol and campesterol/cholesterol ratios were decreased after SADI-S, suggesting a reduced intestinal cholesterol absorption. SADI-S increased exogenous plasma cholesterol-D7 clearance and fecal elimination, also indicating an increased plasma cholesterol excretion. Studying a pair-fed group demonstrated that calorie restriction alone did not explain the beneficial impact of SADI-S. CONCLUSIONS: SADI-S is associated with a greater improvement in lipid and glucose homeostasis than RYGB in ob/ob mice.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Animais , Masculino , Camundongos , Colesterol , Gastrectomia , Glucose , Homeostase , Lipídeos , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Camundongos Obesos
8.
J Sport Health Sci ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37748689

RESUMO

BACKGROUND: Adenosine triphosphatase inhibitory factor 1 (IF1) is a key protein involved in energy metabolism. IF1 has been linked to various age-related diseases, although its relationship with physical activity (PA) remains unclear. Additionally, the apolipoprotein A-I (apoA-I), a PA-modulated lipoprotein could play a role in this relationship because it shares a binding site with IF1 on the cell-surface ATP synthase. We examined here the associations between chronic PA and plasma IF1 concentrations among older adults, and we investigated whether apoA-I mediated these associations. METHODS: In the present work, 1096 healthy adults (63.8% women) aged 70 years and over who were involved in the Multidomain Alzheimer Prevention Trial study were included. IF1 plasma concentrations (square root of ng/mL) were measured at the 1-year visit of the Multidomain Alzheimer Prevention Trial, while PA levels (square root of metabolic equivalent task min/week) were assessed using questionnaires administered each year from baseline to the 3-year visit. Multiple linear regressions were performed to investigate the associations between the first-year mean PA levels and IF1 concentrations. Mediation analyses were conducted to examine whether apoA-I mediated these associations. Mixed-effect linear regressions were carried out to investigate whether the 1-year visit IF1 concentrations predicted subsequent changes in PA. RESULTS: Multiple linear regressions indicated that first-year mean PA levels were positively associated with IF1 concentrations (B = 0.021; SE = 0.010; p = 0.043). Mediation analyses revealed that about 37.7% of this relationship was mediated by apoA-I (Bab = 0.008; SE = 0.004; p = 0.023). Longitudinal investigations demonstrated that higher concentrations of IF1 at the 1-year visit predicted a faster decline in PA levels over the subsequent 2 years (time × IF1: B = -0.148; SE = 0.066; p = 0.025). CONCLUSION: This study demonstrated that regular PA is associated with plasma IF1 concentrations, and it suggests that apoA-I partly mediates this association. Additionally, this study found that baseline concentrations of IF1 can predict future changes in PA. However, further research is needed to fully understand the mechanisms underlying these observations.

9.
J Clin Lipidol ; 17(5): 643-658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37550151

RESUMO

BACKGROUND: The role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in dyslipidemia may go beyond its immediate effects on low-density lipoprotein receptor (LDL-R) activity. OBJECTIVE: This study aimed to assess PCSK9-derived alterations of high-density lipoprotein (HDL) physiology, which bear a potential to contribute to cardiovascular risk profile. METHODS: HDL was isolated from 33 patients with familial autosomal dominant hypercholesterolemia (FH), including those carrying PCSK9 gain-of-function (GOF) genetic variants (FH-PCSK9, n = 11), together with two groups of dyslipidemic patients employed as controls and carrying genetic variants in the LDL-R not treated (ntFH-LDLR, n = 11) and treated (tFH-LDLR, n = 11) with statins, and 11 normolipidemic controls. Biological evaluations paralleled by proteomic, lipidomic and glycomic analyses were applied to characterize functional and compositional properties of HDL. RESULTS: Multiple deficiencies in the HDL function were identified in the FH-PCSK9 group relative to dyslipidemic FH-LDLR patients and normolipidemic controls, which involved reduced antioxidative, antiapoptotic, anti-thrombotic and anti-inflammatory activities. By contrast, cellular cholesterol efflux capacity of HDL was unchanged. In addition, multiple alterations of the proteomic, lipidomic and glycomic composition of HDL were found in the FH-PCSK9 group. Remarkably, HDLs from FH-PCSK9 patients were systematically enriched in several lysophospholipids as well as in A2G2S2 (GP13) glycan and apolipoprotein A-IV. Based on network analysis of functional and compositional data, a novel mosaic structure-function model of HDL biology involving FH was developed. CONCLUSION: Several metrics of anti-atherogenic HDL functionality are altered in FH-PCSK9 patients paralleled by distinct compositional alterations. These data provide a first-ever overview of the impact of GOF PCSK9 genetic variants on structure-function relationships in HDL.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Lipoproteínas HDL/genética , Proteômica , Hiperlipoproteinemia Tipo II/genética , Relação Estrutura-Atividade , Receptores de LDL/genética , Mutação
11.
Clin Nutr ESPEN ; 55: 174-177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37202042

RESUMO

BACKGROUND: Impaired arterial elasticity reflects increased risk of atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH). Treatment with omega-3 fatty acid ethyl esters (ω-3FAEEs) in FH patients has been shown to improve postprandial triglyceride-rich lipoprotein (TRL) metabolism, including TRL-apolipoprotein(a) [TRL-apo(a)]. Whether ω-3FAEE intervention also improves postprandial arterial elasticity in FH has not been demonstrated. METHODS: We carried out an 8-week open-label, randomized, crossover trial to test the effect of ω-3FAEEs (4 g/day) on postprandial arterial elasticity in 20 FH subjects following ingestion of an oral fat load. Fasting and postprandial large (C1) and small (C2) artery elasticity at 4 and 6 h were measured by pulse contour analysis of the radial artery. The area under-the-curves (AUCs) (0-6 h) for C1, C2, plasma triglycerides and TRL-apo(a) were determined using the trapezium rule. RESULTS: Compared with no treatment, ω-3FAEEs significantly increased fasting (+9%, P < 0.05) and postprandial C1 at 4 h (+13%, P < 0.05) and at 6 h (+10%, P < 0.05), with improvement in the postprandial C1 AUC (+10%, P < 0.01). ω-3FAEEs also decreased postprandial triglyceride and TRL-apo(a) AUCs (-17% and -19%, respectively, P < 0.05). ω-3FAEEs had no significant effect on fasting and postprandial C2. The change in C1 AUC was inversely associated with the changes in the AUC of triglycerides (r = -0.609, P < 0.01) and TRL-apo(a) (r = -0.490, P < 0.05). CONCLUSIONS: High-dose ω-3FAEEs improves postprandial large artery elasticity in adults with FH. Reduction in postprandial TRL-apo(a) with ω-3FAEEs may contribute to the improvement in large artery elasticity. However, our findings need to be confirmed in a larger population. CLINICAL TRIAL REGISTRATION: https://www. CLINICALTRIALS: com/NCT01577056.


Assuntos
Ácido Eicosapentaenoico , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Triglicerídeos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Jejum , Artérias
12.
Artigo em Inglês | MEDLINE | ID: mdl-37224999

RESUMO

Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.


Assuntos
Ceramidas , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Serina/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas/metabolismo
13.
Cell Mol Gastroenterol Hepatol ; 15(6): 1443-1461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858136

RESUMO

BACKGROUND & AIMS: Enteroendocrine cells (EECs) and their hormones are essential regulators of whole-body energy homeostasis. EECs sense luminal nutrients and microbial metabolites and subsequently secrete various hormones acting locally or at a distance. Impaired development of EECs during embryogenesis is life-threatening in newborn mice and humans due to compromised nutrient absorption. However, the physiological importance of the EEC system in adult mice has yet to be directedly studied. Herein, we aimed to determine the long-term consequences of a total loss of EECs in healthy adults on energy metabolism, intestinal transcriptome, and microbiota. METHODS: We depleted intestinal EECs by tamoxifen treatment of adult Neurog3fl/fl; Villin-CreERT2 male mice. We studied intestinal cell differentiation, food efficiency, lipid absorption, microbiota composition, fecal metabolites, and transcriptomic responses in the proximal and distal small intestines of mice lacking EECs. We also determined the high-fat diet-induced transcriptomic changes in sorted Neurog3eYFP/+ EECs. RESULTS: Induction of EEC deficiency in adults is not life-threatening unless fed with a high-fat diet. Under a standard chow diet, mice lose 10% of weight due to impaired food efficiency. Blood concentrations of cholesterol, triglycerides, and free fatty acids are reduced, and lipid absorption is impaired and delayed in the distal small intestine. Genes controlling lipogenesis, carbohydrate metabolism, and neoglucogenesis are upregulated. Microbiota composition is rapidly altered after EECs depletion and is characterized by decreased α-diversity. Bacteroides and Lactobacillus were progressively enriched, whereas Lachnospiraceae declined without impacting fecal short-chain fatty acid concentrations. CONCLUSIONS: EECs are dispensable for survival in adult male mice under a standard chow diet. The absence of EECs impairs intestinal lipid absorption, leading to transcriptomic and metabolic adaptations and remodeling of the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Animais , Intestinos , Células Enteroendócrinas/metabolismo , Hormônios/metabolismo , Colesterol/metabolismo
14.
J Atheroscler Thromb ; 30(3): 274-286, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35676030

RESUMO

AIM: Lipoprotein(a) (Lp(a)) is a low-density lipoprotein-like particle containing apolipoprotein(a) (apo(a)) that increases the risk of atherosclerotic cardiovascular disease (ASCVD) in familial hypercholesterolemia (FH). Postprandial redistribution of apo(a) protein from Lp(a) to triglyceride-rich lipoproteins (TRLs) may also increase the atherogenicity of TRL particles. Omega-3 fatty acid (ω3FA) supplementation improves postprandial TRL metabolism in FH subjects. However, its effect on postprandial apo(a) metabolism has yet to be investigated. METHODS: We carried out an 8-week open-label, randomized, crossover trial to test the effect of ω3FA supplementation (4 g/day) on postprandial apo(a) responses in FH patients following ingestion of an oral fat load. Postprandial plasma total and TRL-apo(a) concentrations were measured by liquid chromatography with tandem mass spectrometry, and the corresponding areas under the curve (AUCs) (0-10h) were determined using the trapezium rule. RESULTS: Compared with no ω3FA treatment, ω3FA supplementation significantly lowered the concentrations of postprandial TRL-apo(a) at 0.5 (-17.9%), 1 (-18.7%), 2 (-32.6%), and 3 h (-19.2%) (P<0.05 for all). Postprandial TRL-apo(a) AUC was significantly reduced with ω3FA by 14.8% (P<0.05). By contrast, ω3FA had no significant effect on the total AUCs of apo(a), apoC-III, and apoE (P>0.05 for all). The decrease in postprandial TRL-apo(a) AUC was significantly associated with changes in the AUC of triglycerides (r=0.600; P<0.01) and apoB-48 (r=0.616; P<0.01). CONCLUSIONS: Supplementation with ω3FA reduces postprandial TRL-apo(a) response to a fat meal in FH patients; this novel metabolic effect of ω3FA may have implications on decreasing the risk of ASCVD in patients with FH, especially in those with elevated plasma triglyceride and Lp(a) concentrations. However, the clinical implications of these metabolic findings require further evaluation in outcome or surrogate endpoint trials.


Assuntos
Ácidos Graxos Ômega-3 , Hiperlipoproteinemia Tipo II , Humanos , Apoproteína(a) , Triglicerídeos , Lipoproteína(a) , Suplementos Nutricionais , Período Pós-Prandial , Apolipoproteínas B
15.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
16.
Pediatr Res ; 93(4): 938-947, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35739258

RESUMO

BACKGROUND: Preterm birth is associated with higher risks of suboptimal neurodevelopment and cardiometabolic disease later in life. Altered maternal-fetal lipid supply could play a role in such risks. Our hypothesis was that very preterm infants born with very low birth weight (VLBW) have altered lipidome and apolipoprotein profiles, compared with term infants. METHODS: Seven mothers of VLBW infants born at <32 GA and 8 full-term mother-infant dyads were included. Cholesterol and triglycerides in lipoproteins were determined in maternal plasma and in the two blood vessels of the umbilical cord (vein (UV) and artery (UA)) following FPLC isolation. Apolipoprotein concentrations in lipoproteins and plasma lipidomic analysis were performed by LC-MS/MS. RESULTS: We found higher cholesterol and VLDL-cholesterol in UV and UA and lower apolipoprotein A-I in HDL2 in UV in preterm neonates. Phosphatidylcholine (PC) containing saturated and monounsaturated fatty acids and specific sphingomyelin species were increased in UV and UA, whereas PC containing docosahexaenoic acid (DHA) was reduced in UV of VLBW neonates. CONCLUSIONS: Lower DHA-PC suggests a lower DHA bioavailability and may contribute to the impaired neurodevelopment. Altered HDL-2, VLDL, and sphingomyelin profile reflect an atherogenic risk and increased metabolic risk at adulthood in infants born prematurely. IMPACT: Lower ApoA-I in HDL2, and increased specific sphingomyelin and phosphatidylcholine containing saturated and monounsaturated fatty acid could explain the accumulation of cholesterol in umbilical vein in VLBW preterm neonates. Decreased phosphatidylcholine containing DHA suggest a reduced DHA availability for brain development in VLBW preterm infants. Characterization of alterations in fetal lipid plasma and lipoprotein profiles may help to explain at least in part the causes of the elevated cardiovascular risk known in people born prematurely and may suggest that a targeted nutritional strategy based on the composition of fatty acids carried by phosphatidylcholine may be promising in infants born very early.


Assuntos
Doenças do Prematuro , Nascimento Prematuro , Lactente , Feminino , Humanos , Recém-Nascido , Adulto , Recém-Nascido Prematuro , Projetos Piloto , Lipidômica , Esfingomielinas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lipoproteínas , Recém-Nascido de muito Baixo Peso , Ácidos Docosa-Hexaenoicos , Colesterol , Retardo do Crescimento Fetal , Fosfatidilcolinas
17.
Diabetes Metab ; 49(1): 101391, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174852

RESUMO

AIM: Mitochondrial dysfunction is associated with the development of type 2 diabetes mellitus (T2DM). It is thus of clinical relevance to identify plasma biomarkers of mitochondrial dysfunction associated with the risk of T2DM. ATPase inhibitory factor 1 (IF1) endogenously inhibits mitochondrial ATP synthase activity. Here, we analyzed association of the plasma IF1 level with markers of glucose homeostasis and with the conversion to new-onset diabetes (NOD) in individuals with prediabetes. METHODS: In the IT-DIAB prospective study, the baseline plasma level of IF1 was measured in 307 participants with prediabetes. The primary outcome was the incidence of NOD within five years of follow-up. Cross-sectional analysis of the IF1 level was also done in two independent interventional studies. Correlations between plasma IF1 and metabolic parameters at baseline were assessed by Spearman's correlation coefficients, and the association with the risk of NOD was determined using Cox proportional-hazards models. RESULTS: In IT-DIAB, the mean IF1 plasma level was lower in participants who developed NOD than in those who did not (537 ± 248 versus 621 ± 313 ng/mL, P   = 0.01). The plasma IF1 level negatively correlated with clinical variables associated with obesity and insulin resistance, including the body mass index (r = -0.20, P  = 0.0005) and homeostasis model assessment of insulin resistance (HOMA-IR). (r = -0.37, P < 0.0001). Conversely, IF1 was positively associated with plasma markers of cardiometabolic health, such as HDL-C (r = 0.63, P  <  0.0001) and apoA-I (r = 0.33, P  <  0.0001). These correlations were confirmed in cross-sectional analyses. In IT-DIAB, the IF1 level was significantly associated with a lower risk of T2DM after adjustment for age, sex, and fasting plasma glucose (HR [95% CI] per 1 SD = 0.76 [0.62; 0.94], P   = 0.012). CONCLUSION: We identified for the first time the mitochondrial-related biomarker IF1 as being associated with the risk of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Estudos Prospectivos , Estado Pré-Diabético/metabolismo , Estudos Transversais , Biomarcadores , Adenosina Trifosfatases
18.
Neuroendocrinology ; 113(5): 549-562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36580896

RESUMO

INTRODUCTION: Obesity is associated with impaired learning, but the mechanisms underlying this cognitive dysfunction are poorly understood. Moreover, whether obesity-induced learning deficits show sexual dimorphism remains controversial. Females are believed to be protected from cognitive decline by oestrogens. These hormones enhance the expression of tryptophan hydroxylase 2, the rate-limiting enzyme in the transformation of tryptophan (Trp) into serotonin which plays a significant role in learning and memory. However, several learning-regulating compounds also arise from Trp metabolism through the kynurenine pathway (KP), including kynurenic acid (KA), xanthurenic acid (XA), and NAD+. The present study aimed to determine the involvement of the KP of Trp metabolism in the regulation of learning in control and obese female rats. METHODS: The learning capabilities of control and obese rats were evaluated using the novel object recognition test. Trp and Trp-derived metabolites were quantified in the hippocampus and frontal cortex by ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: Control rats in proestrus/oestrous performed better than their control mates in metestrus/dioestrus. Likewise, while control and obese rats in dioestrus/metestrus did not show differences in learning, obese rats in proestrus/oestrous displayed decreased memory capacity along with decreased Trp concentration and reduced KA, XA, and NAD+ production in the hippocampus. These neurochemical alterations were associated with impaired expression of mRNAs coding for key enzymes of the KP. CONCLUSION: The results presented here indicate that the deleterious effects of obesity on learning are closely related to the oestrous cycle and associated with an impairment of the KP of Trp metabolism.


Assuntos
Cinurenina , NAD , Feminino , Ratos , Animais , Cinurenina/metabolismo , NAD/metabolismo , Triptofano/metabolismo , Encéfalo/metabolismo , Ácido Cinurênico/metabolismo , Transtornos da Memória , Obesidade/metabolismo
19.
Front Immunol ; 13: 960226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275699

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T cell progenitors. Since relapsed T-ALL is associated with a poor prognosis improving initial treatment of patients is essential to avoid resistant selection of T-ALL. During initiation, development, metastasis and even in response to chemotherapy, tumor cells face strong metabolic challenges. In this study, we identify mitochondrial UnCoupling Protein 2 (UCP2) as a tricarboxylic acid (TCA) cycle metabolite transporter controlling glutamine metabolism associated with T-ALL cell proliferation. In T-ALL cell lines, we show that UCP2 expression is controlled by glutamine metabolism and is essential for their proliferation. Our data show that T-ALL cell lines differ in their substrate dependency and their energetic metabolism (glycolysis and oxidative). Thus, while UCP2 silencing decreases cell proliferation in all leukemia cells, it also alters mitochondrial respiration of T-ALL cells relying on glutamine-dependent oxidative metabolism by rewiring their cellular metabolism to glycolysis. In this context, the function of UCP2 in the metabolite export of malate enables appropriate TCA cycle to provide building blocks such as lipids for cell growth and mitochondrial respiration. Therefore, interfering with UCP2 function can be considered as an interesting strategy to decrease metabolic efficiency and proliferation rate of leukemia cells.


Assuntos
Glutamina , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Glutamina/metabolismo , Malatos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proliferação de Células , Ácidos Tricarboxílicos , Lipídeos
20.
Dev Neurosci ; 44(6): 603-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36162387

RESUMO

Maternal stress during pregnancy results in increased risk of developing psychiatric disorders in the offspring including anxiety, depression, schizophrenia, and autism. However, the mechanisms underlying this disease susceptibility remain largely to be determined. In this study, the involvement of the serotonin (5-HT) and kynurenine (KYN) pathways of tryptophan metabolism on the behavioral deficits induced by maternal stress during the late phase of gestation in mice was investigated. Adult offspring born to control or restraint-stressed dams were exposed to the elevated plus-maze and tail suspension tests. Metabolites of the KYN and 5-HT pathways were measured in the hippocampus and brainstem by ultra-performance liquid chromatography tandem mass spectrometry. Female, but not male, prenatally stressed (PNS) offspring displayed a depressive-like phenotype, mainly when in proestrus/diestrus, along with reduced hippocampal 5-HT levels and high 5-HT turnover rate in the hippocampus and brainstem. In contrast, male PNS mice showed enhanced anxiety-like behaviors and higher hippocampal and brainstem quinolinic acid levels compared to male offspring born to nonstressed dams. These results indicate that maternal stress affects the behavior and brain metabolism of tryptophan in the offspring in a sex-dependent manner and suggest that alterations in both the 5-HT and KYN pathways may underlie the emotional dysfunctions observed in individuals exposed to stress during in utero development.


Assuntos
Cinurenina , Triptofano , Gravidez , Camundongos , Animais , Feminino , Cinurenina/metabolismo , Triptofano/metabolismo , Serotonina/metabolismo , Ansiedade/metabolismo , Comportamento Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...